A Skeptical Look at Mob Grazing

Mob grazing is attracting a lot of attention lately, especially among people who are fans of other intensive rotational grazing systems.  Usually, mob grazing is an extreme form of rotational grazing, in which high numbers of cattle are grazed in very small areas – for very short periods of time.  Often, cattle are given a new area to graze daily (or more frequently) and formerly grazed areas are allowed to rest for several months or more before being grazed again.  The intensity of grazing in individual paddocks varies by the rancher or grazier running the system.  In some cases, that intensity can be very high.  Proponents list off multiple benefits to the land from mob grazing, including increased soil organic matter, weed control, and “grass health”.

Mob grazing in central Nebraska. Cattle are just being moved from the paddock on the left to the one on the right. These cattle were being moved multiple times per day.

My purpose for this post is not to make any kind of final judgement on mob grazing, but to point out a few things that concern me from a prairie conservation perspective – and perhaps slow down the mob grazing bandwagon just a bit.  Those of you who have followed my blog for any length of time are aware that I’m generally a fan of using grazing as a tool for prairie management.  There is abundant data showing benefits of grazing to wildlife habitat and plant species diversity, both on my own sites and others.  I don’t advocate grazing for all prairies, but I do think prairie managers should look at grazing with an open mind, and consider how it might help them achieve specific objectives.

In the case of mob grazing, however, I’m very concerned about what I’ve seen in my (limited) personal experience, and even more concerned that I’ve been unable to find ANY published research on the topic.  I think there are good reasons to cautious before buying into anything supported only by testimonials, so I’m nervous about how strongly mob grazing is being promoted.  To be clear, I’m approaching this from a prairie conservation perspective, not a graziers perspective, so my thoughts should be taken in that context.

Impacts on Soil Organic Matter

Returning to the purported benefits of mob grazing, let’s look at soil organic matter first.  While there are various explanations of how mob grazing affects organic matter in the soil, the general idea seems to be that mob grazing cattle eat about 60 percent of the standing vegetation and stomp the remaining 40 percent into the soil.  Thus, soil organic matter increases and becomes more productive.  This has never jived with my understanding of soil organic matter (soil carbon) production, so I checked with four prominent scientists around the country who study soil nutrient cycling, including soil carbon.  When I asked them if the claims from mob grazing advocates made sense, their response was unanimous and strikingly blunt.  To quote one of them, “That’s totally bogus”.

In reality, soil organic matter is formed mainly by belowground processes, including root decomposition, root exudates, and mycorrhizal carbon inputs.  In prairies, a substantial percentage of plant roots are abandoned to decompose each year and replaced with new roots.  Those old roots provide organic matter in abundance, and more importantly, that organic matter becomes a stable part of the soil profile – and is added to and enhanced by the other two processes listed above.  My panel of experts said that stomping vegetation into the soil might provide a slight and temporary increase in organic matter near the soil surface, but that it would be unstable and wouldn’t last long.  It’s the stable supply of organic matter deeper in the soil profile that actually drives plant productivity, and that supply comes from plant roots themselves.  In fact, the experts suggested that the kind of vegetation stomping I asked them about was likely to have fairly negative consequences.  They thought that soil compaction and disruption of soil structure as a result from heavy trampling would probably decrease -not increase – plant productivity.  None of this means soil organic matter can’t increase under mob grazing, but any increase would be due to the same belowground processes listed above.

As an aside, I’ve heard some rotational grazing proponents talk about why fire is a bad thing in grasslands because it burns up vegetation that would otherwise be incorporated into the soil – thus, fire decreases organic matter in soil.  This is clearly not the case, and has been thoroughly dismissed by multiple researchers who have shown stable or increasing levels of soil carbon under frequent fire.

Some proponents of mob grazing say that this kind of heavy impact adds organic matter to the soil. Scientists who study soil and organic matter disagree, and suggest it’s likely doing more harm than good.  To be fair, not all mob grazing is this intensive.

Impacts on Weeds

A second purported benefit of mob grazing is weed control.  First, of course, we need to define what a “weed” is.  As has been discussed in this blog before, it’s a very subjective term.  Generally, there are two categories of plants that people consider to be weeds; opportunistic plants that take advantage of weakened dominant plants (e.g. ragweeds, annual grasses, and other short-lived rapidly-reproducing plants), and truly invasive species that are non-native to a particular ecosystem and become dominant to the expense of other species.  Let’s look at each of those two in the context of mob grazing.

If opportunistic plants are the weeds of concern, it seems unlikely that mob grazing would help suppress them.  Mob grazing proponents say that the high grazing intensity makes cattle eat – or stomp – all plants in the paddock, thus removing the weeds that cattle wouldn’t normally eat.  Unfortunately, while that might be true in the short-term, it’s the recovery from that grazing that’s more important.  Opportunistic plants are successful because they can recover from intense disturbances faster than others.  Big strong grasses are the biggest competitors to those “weeds”, and those grasses are greatly weakened by severe defoliation.  Until those grasses and other major perennials recover their dominance of the plant community again, opportunistic plants run rampant.  If the time until the next grazing bout allows those grasses to fully recover their vigor, those opportunistic plants will eventually fade – but only until the next grazing bout.  In other words pulses of intensive grazing will result in flushes in opportunistic plant abundance as well.  I would argue that most opportunistic plant species are non-threatening in any regard, but if suppressing them is an objective, the smart strategy is to strengthen the surrounding plant community.

In this pasture, mob grazing was being used as a tool for controlling musk thistle. The heavy grazing intensity did get the cattle to eat some (but not all) of the thistles. (Continued on next photo)

.

Although heavy grazing intensity can get cattle to eat at least some musk thistles, areas like this one that are a couple weeks into the recovery from that grazing tell the real story. The severe weakening of dominant grasses opened up space for opportunistic plants (like these numerous musk thistle rosettes) – and the grazing led to the exact opposite of the desired impact.  Fields of blooming thistles can be seen in the background of this photo where they’ve had sufficient time since grazing to reach maturity.

It is possible to reduce the abundance of opportunistic plants in pasture through periodic moderate grazing.  Mob grazing that moves animals through paddocks quickly enough that the lower leaves of grasses are left ungrazed, could actually stimulate the matrix of grass to thicken, due to increased growth of rhizomes and tillers (stems).  Higher density of grass that chokes out other plants might be seen as beneficial from a grazing standpoint if grass is the only thing the grazier wants – especially in tame grass pastures.  However, from a plant diversity and wildlife habitat standpoint in native praireis (the perspective I’m coming from) it’s certainly not a good thing.

In the case of truly invasive plant species, the story is a little more complicated because every invasive species has its own unique strategy for becoming dominant.  In most cases, the invasive plant has been released from pests and pathogens that suppressed it in its native habitat, and the plant species in the community being invaded have not had time to develop strategies to combat it.  In some cases, concentrating cattle grazing into a relatively small area can lead to the defoliation of an invasive species that would otherwise avoid being grazed.  If that ability to remain ungrazed while surrounding plants are weakened by grazing is the primary way that invasive plant gains dominance, that defoliation could reduce its spread.  However, in most cases, the story is much more complicated, and invasive plants use a more diverse mixture of advantages and strategies to force their way into plant communities.  Weakening the surrounding plant community through something like mob grazing is likely to increase the spread of invasive plants rather than decrease it.  I would use extreme caution when testing mob grazing as a tool for controlling invasive plants.

 

Impacts on “Grass Health”

When I first heard the claim that mob grazing increases grass health, my initial response was, “I didn’t know the grass was sick!”  It’s hard to glean from the various claims what the specific benefits to grass health are, or how that health is defined.  I also have a hard time understanding why mob grazing would provide any benefits to grass plants that other kinds of grazing systems don’t – as long as those other grazing systems include a mixture of grazing and rest periods.  As with all other plants, I think its important that grasses are allowed to flower and produce seed periodically, and mob grazing may do that (depending upon the length of the recovery period) – but many other grazing systems do the same, without some of the potential risks I see from mob grazing.  In some cases, I think grass health refers mostly to soil organic matter, which I addressed earlier.  Until I hear more specifics about how mob grazing affects grass health, I can’t really respond more.

Other Benefits – Livestock and Wildlife

I’m not sure how this system can be good for livestock performance – especially when paddocks are grazed very intensively.  Forcing a cow to eat plants it wouldn’t normally eat seems to override the cow’s effective inherent ability to optimize its own diet.  Why would it benefit a cow to eat plants – or plant parts – that are not the best available choices within a larger pasture?  I have the same concern with some other rotational systems, but this takes it to an extreme.  In order to gain weight, cattle test and refine their forage intake on a daily basis, constantly adjusting what they eat based on the phenology of the plants.  Under extreme mob grazing, cattle have to eat the least palatable plant species and plant parts along with the good stuff.  I don’t understand the logic of that strategy, and, in fact, even some proponents of mob grazing admit some “inconsistency” in livestock weight gains.  The only research project I know of that has started looking at weight gains and other aspects of mob grazing has found very poor livestock performance during its first season (2011).  Again, I’m not saying that cattle can’t gain weight in mob grazing systems, only that I think people should be cautious about accepting that claim.

An additional benefit promoted by mob grazing advocates is that the system increases the carrying capacity of pastures.  This is a tricky claim to evaluate, because it depends upon your definition of carrying capacity.  On the one hand, it’s surely possible to increase the number of cattle in a pasture, and claim that the carrying capacity of the pasture is now higher – though you can do the same with any grazing system.  On the other hand, a more formal range science definition of carrying capacity is “the maximum animal numbers which can graze each year on a given area of grassland for a specific number of days without inducing a downward trend in forage production, forage quality, or soil.”  In other words, carrying capacity isn’t just the number of cows you can put in a pasture, it’s the number of cows that doesn’t degrade that pasture over time.  This latter definition can only be evaluated by long-term data, which doesn’t currently exist for mob grazing systems.

From a wildlife perspective, it’s hard to say what the impacts of mob grazing would be.  Much depends upon the size of the grazing area, the intensity of grazing, and the length of recovery time.  Clearly, very intense grazing that stomps vegetation into the soil will have extremely negative impacts on any nesting birds or invertebrates in that immediate area.  On the other hand, the majority of the site is always in a recovery phase with no active grazing, so there should be a nice diverse mixture of habitat conditions available.  My guess is that mob grazing could be beneficial for many wildlife species – in terms of habitat structure – depending upon how it’s set up.

A bigger issue is that of plant diversity and overall ecological resilience.  While I think that many people overstate the potential negative impact of cattle grazing on “sensitive” prairie plants, including some rare wildflowers, the impacts from mob grazing on those plants could be a legitimate concern.  I think all prairie plants can put up with some degree of defoliation, even when it’s repeated multiple times over a season or two, but I think we would need some careful study of how intensive mob grazing impacts could affect prairie communities before introducing it as a potential management tool.  The potential soil impacts of more extreme versions of mob grazing are particularly concerning.  I’m sure historic prairies were exposed to high concentrations of bison grazing, but I have a very hard time believing that bison stuck around one place and grazed so intensively that they forced themselves to eat substandard forage.  Until I see some well-supported research on the recovery of plant communities, I’m not comfortable exposing native prairies to that kind of severe disturbance.

The Upshot

I’m not against grazing in prairies, and I’m not even against mob grazing per se.  There may be circumstances under which mob grazing, or some variation of it, could be used to achieve certain objectives.  In tame grass pastures, for example, where tilled land has been converted into forage grasses and the sole purpose of the site is to feed cattle, mob grazing might be worth a try.  In those kinds of pastures, the native plant and soil communies have already been severely altered, so out-of-the-box experiments have a relatively low risk of making things worse.  I still don’t buy most of the claims about the purported benefits to livestock, grasses, or soils, but as long as cattle producers test the system with eyes wide open, who am I to say they shouldn’t?

However, in native prairies and rangeland, I think the potential risks of the more extreme versions of mob grazing far outweigh any purported benefits, at least until there is some actual research that says otherwise.  We have abundant evidence that many aspects of native prairie plant and soil communities do not recover well from tillage, and mob grazing impacts can come uncomfortably close to those of tillage, in my opinion.  There are countless other options for using grazing – even intensive grazing – to suppress dominant grasses, control invasive species, create wildlife habitat structure, and achieve other objectives.  I strongly support active experimentation with grazing techniques that could help us with our numerous prairie conservation challenges, but with grazing, as with anything else, it IS possible to have too much of a good thing.

.

For those interested, here are two links to relevant research papers on soil carbon (organic matter) and fire/grazing, followed by three non-scientific reports on mob grazing.

Kitchen et al, 2009.  (Effects of fire on mowing on soil carbon and other factors.)

Johnson and Matchett, 2001.  (Effects of fire and grazing on belowground processes)

Glowing review of mob grazing

An even more glowing review of mob grazing

Mixed review of mob grazing

Why is it so hard to keep trees out of prairies? (and why is it getting harder?)

The standard explanation for why historical prairies had so few trees is pretty simple – frequent fires kept them out.  Yes, there were other constraints such as frequent droughts, particularly in western prairies, and there were large browsers like elk and pronghorn that helped, but it was fire – set by both people and lightning – that was the major control on tree expansion. 

Historically, frequent fires would have helped keep small trees out of prairies and savannas, but larger oak trees were pretty tolerant of fire.

However, if that explanation is true, why are there so many prairies, managed with frequent fire, being invaded by native and non-native trees alike, for which the only feasible control method seems to be herbicide treatment? 

I think there are a couple possible explanations.  First, we’re in a relatively wet climatic cycle (geologically speaking) that probably favors tree establishment.  Second, we’re still missing those elk and pronghorn – although you’d think whitetail deer and cottontails would make up for that.  Third, we’ve added some novel species like Siberian elm, autumn olive, and a host of others that may not have the natural controls on establishment that some of the native trees have.  However, could it be that in the western tallgrass prairie and the mixed grass prairies, the biggest explanation is simply that there are so many more trees in the surrounding landscape than there used to be?  I just wonder if the seed rain from those trees is so heavy that it overrides any natural controls prairies have for outcompeting them. 

I don’t have any good data to support this other than observation and logic, so I’d love to hear from others who have other ideas (or data!).  But I have seen several cases where aerial photography shows that prairies, even without much fire, experienced only small increases in tree encroachment for decades.  Then, in the last couple of decades, those prairies have become nearly closed in by trees.  It seems to me that continuous seed rain from the surrounding landscape, supported even more by the few “pioneer” trees and shrubs that made it into those prairies early on, eventually overwhelmed those prairies.  Browsers – including little ones like voles – may only be able to keep up with a certain number of tree seedlings.  In addition, little pioneer trees that got started in the middle of those prairies grew large enough to support perching birds.  Those birds brought in more seeds (along with free fertilizer), and those isolated trees became ever-expanding patches of trees and shrubs.  The result was an exponential curve of tree encroachment.

Sometimes the reasons for tree encroachment are not hard to figure out.

Of course, while tree encroachment may be happening at a faster rate than it did a century or two ago, the other side of the equation is that our smaller, more fragmented prairies are more vulnerable to that encroachment than the historic sea of grass would have been.  A couple acres of sumac shrubland in the middle of a huge grassland is not a big deal, but it’s hard to put up with a couple acres of sumac in a 5 or 10 acre prairie remnant that represents the only high quality prairie in its county.

In some ways the explanations of why tree encroachment is a bigger problem than it used to be are beside the point.  Regardless of why it’s happening, it’s clear that in many (most?) prairies today, keeping trees out has become a bigger challenge than simply determining an appropriate fire frequency.  It requires vigilance and consistent patrolling with herbicide applicators, in addition to management with fire and/or grazing. 

The good news is that there are some tools and techniques available to make herbicide application easier and less harmful to surrounding prairie vegetation.  One of the best techniques I’m aware of is the use of a PVC herbicide wand, which is essentially a long piece of PVC pipe  filled with a sponge stuck in one end.  The wand was originally developed to apply herbicide to small cut stumps to prevent regrowth.  But if you fill it with a 3:1 ratio of crop oil to herbicide (Remedy, Garlon, or other Triclopyr-based herbicide) you can use it as an applicator for the “basal bark” method of herbicide application.  The basal bark technique works by applying that oil/herbicide mixture to the base of young trees, and the oil helps penetrate the thin bark and kill the tree.  It works any time of year – even winter – and is very effective.  We used to use hand and backpack sprayers to apply the herbicide until our clever land steward, Chris Rundstrom, thought of putting the herbicide wand to use instead.  Using the wand saves a lot of repair and replacement of sprayers because the plastic and rubber gaskets and seals in those sprayers get eaten up by the oil.

Basic Instructions for Basal Bark Treatment of Small Trees (see herbicide label for specifics)

– 3:1 ratio of Crop oil: Remedy© (or other herbicides with the chemical triclopyr – check label for instructions).

– Dye if needed.

 Apply to the lower 12” of small trees (less than 3” diameter) with small sprayer or PVC wand.  Just need to get a 2” band wet on one side of smaller trees or 2” ring around larger ones.

 Works on any deciduous tree young enough to have thin smooth bark, including willows, dogwood, sumac, cottonwood, mulberry, ash, Siberian elm, Russian olive, etc.

 Apply any time of year – including winter.  When applying in the dormant season, trees may green up for a week or two in the spring before they die.

Instructions for making a PVC herbicide wand:    http://www.invasive.org/gist/tools/wand.html

Another trick that can work well in some situations is the use of a wick applicator.  An old rope wick – like farmers used to use on soybeans – can do the trick, but there are numerous “roller wicks” available today that can get more herbicide on the plants with less dripping.  A wick application can work well when the trees are fairly dense, taller than the surrounding vegetation, but still flexible enough that a tractor or atv can get through them without tearing up the vehicle or wick applicator.

One example of a roller wick: http://www.agriweld.com/pages/weedwipers.html